3.313 \(\int (a+a \cos (c+d x))^4 \sec ^{\frac{5}{2}}(c+d x) \, dx\)

Optimal. Leaf size=118 \[ \frac{2 a^4 \sin (c+d x) \sec ^{\frac{3}{2}}(c+d x)}{3 d}+\frac{8 a^4 \sin (c+d x) \sqrt{\sec (c+d x)}}{d}+\frac{2 a^4 \sin (c+d x)}{3 d \sqrt{\sec (c+d x)}}+\frac{40 a^4 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d} \]

[Out]

(40*a^4*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*d) + (2*a^4*Sin[c + d*x])/(3*d*Sqr
t[Sec[c + d*x]]) + (8*a^4*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/d + (2*a^4*Sec[c + d*x]^(3/2)*Sin[c + d*x])/(3*d)

________________________________________________________________________________________

Rubi [A]  time = 0.210607, antiderivative size = 118, normalized size of antiderivative = 1., number of steps used = 16, number of rules used = 7, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.304, Rules used = {3238, 3791, 3769, 3771, 2641, 2639, 3768} \[ \frac{2 a^4 \sin (c+d x) \sec ^{\frac{3}{2}}(c+d x)}{3 d}+\frac{8 a^4 \sin (c+d x) \sqrt{\sec (c+d x)}}{d}+\frac{2 a^4 \sin (c+d x)}{3 d \sqrt{\sec (c+d x)}}+\frac{40 a^4 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Cos[c + d*x])^4*Sec[c + d*x]^(5/2),x]

[Out]

(40*a^4*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*d) + (2*a^4*Sin[c + d*x])/(3*d*Sqr
t[Sec[c + d*x]]) + (8*a^4*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/d + (2*a^4*Sec[c + d*x]^(3/2)*Sin[c + d*x])/(3*d)

Rule 3238

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^(n_.))^(p_.), x_Symbol] :> Dist
[d^(n*p), Int[(d*Csc[e + f*x])^(m - n*p)*(b + a*Csc[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, d, e, f, m, n, p}, x
] &&  !IntegerQ[m] && IntegersQ[n, p]

Rule 3791

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Int[Expand
Trig[(a + b*csc[e + f*x])^m*(d*csc[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0]
 && IGtQ[m, 0] && RationalQ[n]

Rule 3769

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(Cos[c + d*x]*(b*Csc[c + d*x])^(n + 1))/(b*d*n), x
] + Dist[(n + 1)/(b^2*n), Int[(b*Csc[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && Integer
Q[2*n]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 3768

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Csc[c + d*x])^(n - 1))/(d*(n -
 1)), x] + Dist[(b^2*(n - 2))/(n - 1), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1
] && IntegerQ[2*n]

Rubi steps

\begin{align*} \int (a+a \cos (c+d x))^4 \sec ^{\frac{5}{2}}(c+d x) \, dx &=\int \frac{(a+a \sec (c+d x))^4}{\sec ^{\frac{3}{2}}(c+d x)} \, dx\\ &=\int \left (\frac{a^4}{\sec ^{\frac{3}{2}}(c+d x)}+\frac{4 a^4}{\sqrt{\sec (c+d x)}}+6 a^4 \sqrt{\sec (c+d x)}+4 a^4 \sec ^{\frac{3}{2}}(c+d x)+a^4 \sec ^{\frac{5}{2}}(c+d x)\right ) \, dx\\ &=a^4 \int \frac{1}{\sec ^{\frac{3}{2}}(c+d x)} \, dx+a^4 \int \sec ^{\frac{5}{2}}(c+d x) \, dx+\left (4 a^4\right ) \int \frac{1}{\sqrt{\sec (c+d x)}} \, dx+\left (4 a^4\right ) \int \sec ^{\frac{3}{2}}(c+d x) \, dx+\left (6 a^4\right ) \int \sqrt{\sec (c+d x)} \, dx\\ &=\frac{2 a^4 \sin (c+d x)}{3 d \sqrt{\sec (c+d x)}}+\frac{8 a^4 \sqrt{\sec (c+d x)} \sin (c+d x)}{d}+\frac{2 a^4 \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{3 d}+2 \left (\frac{1}{3} a^4 \int \sqrt{\sec (c+d x)} \, dx\right )-\left (4 a^4\right ) \int \frac{1}{\sqrt{\sec (c+d x)}} \, dx+\left (4 a^4 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \sqrt{\cos (c+d x)} \, dx+\left (6 a^4 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx\\ &=\frac{8 a^4 \sqrt{\cos (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{d}+\frac{12 a^4 \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{d}+\frac{2 a^4 \sin (c+d x)}{3 d \sqrt{\sec (c+d x)}}+\frac{8 a^4 \sqrt{\sec (c+d x)} \sin (c+d x)}{d}+\frac{2 a^4 \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{3 d}+2 \left (\frac{1}{3} \left (a^4 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx\right )-\left (4 a^4 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \sqrt{\cos (c+d x)} \, dx\\ &=\frac{40 a^4 \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{3 d}+\frac{2 a^4 \sin (c+d x)}{3 d \sqrt{\sec (c+d x)}}+\frac{8 a^4 \sqrt{\sec (c+d x)} \sin (c+d x)}{d}+\frac{2 a^4 \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{3 d}\\ \end{align*}

Mathematica [A]  time = 0.334052, size = 70, normalized size = 0.59 \[ \frac{a^4 \sec ^{\frac{3}{2}}(c+d x) \left (5 \sin (c+d x)+24 \sin (2 (c+d x))+\sin (3 (c+d x))+80 \cos ^{\frac{3}{2}}(c+d x) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )\right )}{6 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Cos[c + d*x])^4*Sec[c + d*x]^(5/2),x]

[Out]

(a^4*Sec[c + d*x]^(3/2)*(80*Cos[c + d*x]^(3/2)*EllipticF[(c + d*x)/2, 2] + 5*Sin[c + d*x] + 24*Sin[2*(c + d*x)
] + Sin[3*(c + d*x)]))/(6*d)

________________________________________________________________________________________

Maple [B]  time = 3.509, size = 292, normalized size = 2.5 \begin{align*}{\frac{8\,{a}^{4}}{3\,d}\sqrt{- \left ( -2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+1 \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}} \left ( 2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{6}\cos \left ( 1/2\,dx+c/2 \right ) +10\,\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) \sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}} \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-14\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}\cos \left ( 1/2\,dx+c/2 \right ) -5\,\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) +7\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}\cos \left ( 1/2\,dx+c/2 \right ) \right ) \sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}} \left ( 4\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}-4\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+1 \right ) ^{-1} \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-3}{\frac{1}{\sqrt{2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+cos(d*x+c)*a)^4*sec(d*x+c)^(5/2),x)

[Out]

8/3*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^4/(4*sin(1/2*d*x+1/2*c)^4-4*sin(1/2*d*x+1/2*c)
^2+1)/sin(1/2*d*x+1/2*c)^3*(2*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)+10*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*Elli
pticF(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^2-14*sin(1/2*d*x+1/2*c)^4*co
s(1/2*d*x+1/2*c)-5*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),
2^(1/2))+7*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c))*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(2*co
s(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (a \cos \left (d x + c\right ) + a\right )}^{4} \sec \left (d x + c\right )^{\frac{5}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^4*sec(d*x+c)^(5/2),x, algorithm="maxima")

[Out]

integrate((a*cos(d*x + c) + a)^4*sec(d*x + c)^(5/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (a^{4} \cos \left (d x + c\right )^{4} + 4 \, a^{4} \cos \left (d x + c\right )^{3} + 6 \, a^{4} \cos \left (d x + c\right )^{2} + 4 \, a^{4} \cos \left (d x + c\right ) + a^{4}\right )} \sec \left (d x + c\right )^{\frac{5}{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^4*sec(d*x+c)^(5/2),x, algorithm="fricas")

[Out]

integral((a^4*cos(d*x + c)^4 + 4*a^4*cos(d*x + c)^3 + 6*a^4*cos(d*x + c)^2 + 4*a^4*cos(d*x + c) + a^4)*sec(d*x
 + c)^(5/2), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))**4*sec(d*x+c)**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (a \cos \left (d x + c\right ) + a\right )}^{4} \sec \left (d x + c\right )^{\frac{5}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^4*sec(d*x+c)^(5/2),x, algorithm="giac")

[Out]

integrate((a*cos(d*x + c) + a)^4*sec(d*x + c)^(5/2), x)